고객 이탈(취소)과 참여는 온라인 제품 또는 서비스를 제공하는 모든 회사의 사활이 걸린 문제다. 데이터 과학 및 분석의 광범위한 채택과 맞물려, 데이터 전문가들을 불러 이동 감소 노력을 돕는 것이 표준이다. 그러나 이탈에 대한 이해는 다른 데이터 애플리케이션에서 흔히 볼 수 없는 많은 도전과 함정을 가지고 있으며, 지금까지 데이터 전문가(또는 학생)가 이 분야를 시작할 때 도움이 될 만한 책은 없었다.
지난 6년 동안, 수십 개의 제품과 서비스를 통해 이탈 관련 작업을 해왔고 주오라라는 회사에서 최고 데이터 과학자로 일했다. 주오라는 구독 기업들이 제품, 운영, 재무 등을 관리할 수 있는 플랫폼을 제공한다. 이 책 곳곳에 나오는 사례 연구에서 주오라의 일부 고객을 볼 수 있다.
나는 그 기간 동안 다른 방법으로 이탈을 분석하고, 그 결과를 이탈과 싸우고 있는 회사 사람들에게 피드백하는 실험을 했다. 사실은 초기의 몇 년 동안 많은 실수를 저질렀다. 다른 사람들은 그와 같은 실수를 하지 않았으면 해서 이 책을 쓰자고 결심했다.
데이터 담당자의 관점에서 작성했다. 누구든지 이 책을 통해 원시 데이터를 가지고 이탈과의 싸움에 도움이 되는 유용한 발견을 할 것으로 기대한다. 이 책을 보는 사람은 데이터 과학자, 데이터 분석가 또는 머신러닝 엔지니어나 데이터와 코드에 대해 조금 알아서 분석을 요청을 받은 사람일 수도 있다. 이 책은 파이썬과 SQL을 사용하기 때문에 데이터를 다루는 사람이 코드를 아는 사람이라고 가정한다. 나는 데이터 표시와 공유를 위한 스프레드시트를 선호하지만, 스프레드시트에서 이탈 싸움의 주요 분석 작업을 시도하지 않는 것을 추천한다. 많은 작업은 순차적으로 수행돼야 하며, 이러한 작업 중 일부는 중요하지 않다. 또 이 과정을 여러 번 반복할 필요가 있다. 워크플로가 짧은 프로그램에는 적합하지만 스프레드시트와 그래픽 도구로 진행하기는 어렵다.
데이터를 다루는 사람을 위한 책이기 때문에 제품과 서비스가 취할 수 있는 이탈 감소 조치에 대해서는 자세히 설명하지 않는다. 이 책에는 이메일과 전화 캠페인 실행, 이탈 방지 플레이북 작성, 가격 및 패키징 설계와 같은 작업을 수행하는 방법에 대한 자세한 내용은 설명하지 않는다. 대신 데이터 중심 접근 방식을 통해 고객 이탈에 대한 전투 계획을 수립할 수 있다는 점에서 전략적이다. 즉, 어떤 고객 이탈 감소 활동을 추진할 것인지, 어떤 고객을 대상으로 할 것인지, 어떤 종류의 결과를 예상할 것인지를 선택하는 것이다. 그래도 데이터 사용의 맥락을 이해하는 데 필요한 만큼 높은 수준에서 다양한 이탈 감소 전략을 소개한다.